Space Weather in Support of Aviation

Status of Progress

Presented to: Space Weather Workshop (SWW)

By: Steve Albersheim, FAA (ANG-C6)

Date: 24 April 2012

Organization

- Background
- Concept of Operations
- Performance Requirements
- Schedule
- Summary

Background

> International Civil Aviation Organization:

> Recognized Space Weather (SWx) as a hazard to Aviation

➤ Need for global harmonization of services

Air Navigation Commission tasked the International Airways Volcano Watch Operations Group (IAVWOPSG) to develop set of draft *Operational Requirements for SWx*

Concept of Operations

Draft developed that identifies

- High-Level Operational Requirements
- Functional Requirements

➤ Performance Requirements

- √Threshold values (Spring 2012)
- √ Complete draft requirements (June 2012)
- ✓ICAO's IAWWOPSG adopt ConOps (March 2013) as SWx RoadMap

http://www2.icao.int/en/anb/met/iavwopsg/Pages/default.aspx

Concept Document Elements

- Reduce Impact of Space Weather phenomena on Polar Route operations with the objective to:
 - Improve "Detect & Forecasts Skills" for operational impact assessments
 - Develop and comply with ICAO guidance and recommendations
 - Lead establishment of Global Observations, Forecast and Dissemination methodology
 - Implement use NOAA Space Weather Scales for operational decisions
 - Intensity index and frequency of event occurrence
 - Integrate SWx information into global TFM Procedures

General Outline of ConOps

- Purpose and scope
- User Needs
- Impacts: communications & navigation
- Types: Observation and Forecast
- Functional Requirements
- Providers of information
- Service: standardization of products and delivery
- Operational scenario
- Requirements: performance

Performance Requirements

- •Team to validate space weather functional and performance requirements
 - Functional Requirements state what must be done
 - Observe Space Weather
 - Forecast Space Weather
 - Performance Requirements state how well it must be done
 - Observe Space Weather with an Accuracy of + X
 - Forecast Space Weather with an Accuracy of <u>+</u> Y
- How team will validate the space functional & performance requirements:
 - Review draft functional requirements to ensure all needed space weather types are included
 - Evaluate the performance values required for any changes to specific capability thresholds needed for 2016 implementation
 - Findings incorporated into draft ConOps

Space Weather Performance Criteria for Observations and Forecasts

Impact	Space Weather Element + Fcst Lead Time	Accuracy	Observations and Forecast Threshold(s)	Operations Impact	Notes
Communications	Solar Radiation Storm	± 10	% above median ackground S3 level or > generally impacts operations	Degraded HF in polar region	NOAA Space
		5% above		Navigation position errors	Weather Scale for Solar Radiation Storms S1 through S5
	6 hours	background		Effects within few hours of event lasting for a day or more	
	Solar Geomagnetic Storm	± 10%	Levels G1 through G5 (Kp index)	Degraded Satellite Navigation and HF Communication	NOAA Space Weather Scale for Geomagnetic Storms G1 through G5
Navigation	6 hours	± 1 Kp index	G3 level or > generally impacts operations	Effects in 18-96 hr range lasting hours to day(s)	
	Radio Blackout 6 hours	± 10%	Levels R1 through R5 (W·m²)	Wide spread HF outage immediately on sunlit side of earth	NOAA Space Weather Scale for Radio Blackouts
			R3 level or > generally impacts operations		
	Total Electron Content	± 25%			
Ionospheric Activity	Amplitude Scintillation Index	± 0.1	N/A	Communication/Navigation Impact	Product in Map Format
N/A	Phase Scintillation Index	± 0.1	(No thresholds yet)	Daily variations	
	D-Region Absorption	± 5 MHz			

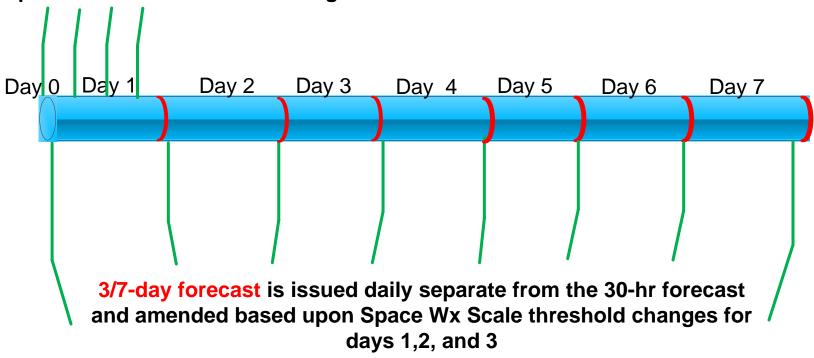
Space Weather Performance Criteria for Obs and Forecasts (Draft)

Impact	Space Weather Element	Verification*	Obs and Forecast Threshold(s)	Operations Impact	Notes
Communications Navigation	Solar Radiation Storm	7 days – 55% 3 days – 60% 30 hrs – 70% 12 hrs – 80% 6 hrs – 90% Obs – 95%	Levels S1 through S5 (particle flux units) S3 level or > generally impacts operations	Degraded HF in polar region Navigation position errors Effects within few hours of event lasting for a day or more	NOAA Space Weather Scale for Solar Radiation Storms S1 through S5
	Solar Geomagnetic Storm		Levels G1 through G5 (Kp index) G3 level or > generally impacts operations	Degraded Satellite Navigation and HF Communication Effects in 18-96 hr range lasting hours to day(s)	NOAA Space Weather Scale for Geomagnetic Storms G1 through G5
	Radio Blackout (Solar Flares)		Levels R1 through R5 (W·m²) R3 level or > generally impacts operations	Wide spread HF outage immediately on sunlit side of earth Lasting minutes to an hour	NOAA Space Weather Scale for Radio Blackouts R1 through R5
	lonospheric Activity (Obs)				
	Total Electrons	Obs - 95% (*2016)	N/A (No thresholds yet)	Communication/Navigation Impact Daily variations	Product in Map Format
	Amplitude/Phase Scintillation Indices				
	D-Region Absorption				

30-Hour Forecast Details

Issued every 6 hours (4 times per day out to 30 hours)

- > TBD: NIL or Forecast changes in SWx Scales
- > Amendments based upon
 - ✓ Observation: Change in SWx Scales (commonly associated with the SWPC use of the word "Alert")
 - ✓ Forecast: Expected imminent change in SWx Scales (commonly associated with the SWPC use of the word "WARNING")
 - ✓ Forecast: Potential changes in SWx Scales (commonly associated with the SWPC use of the word "WATCH")


3/7-Day Forecast

Issued daily

➤ NIL or SWx Scale predictions (days 1-3) and general outlook (days 4-7)

Solution – Option X Forecast Types and Update Rates

30-hr forecast issued every 6-hrs or 4 times/day and amended based upon Space Wx Scale threshold changes

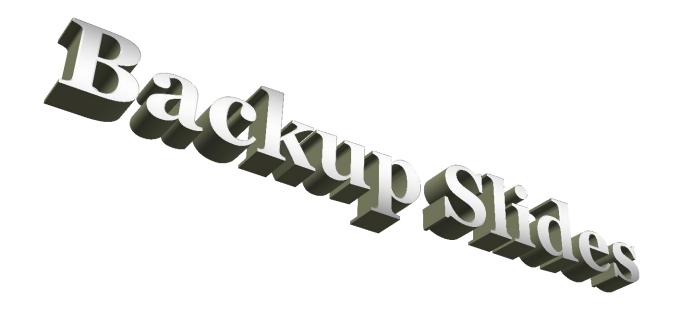
Issues

Items that still need to be resolved:

- ➤ Do the 30 hr & 3/7 day forecasts meet your operational requirements?
- ➤ Does the 30-hr forecast only need to be issued when there's potential solar activity expected within the 30-hour period?
 - ✓ Is a NIL (no solar activity) 30-hr forecast needed 4 times at day?
- ➤ Does a daily 3/7 day NIL (no solar storms) forecast meet your operational requirements?
- Which NOAA Space Weather Scale values impact your operational decisions?
- What Level of accuracy is acceptable for operational decisions?

Strawman has been proposed

Schedule


- 2011: Draft ConOps
- 2012: Develop initial set of Performance Requirements and Complete ConOps for presentation at IAVWOPSG March 2013
 - Based Requirements (Current capabilities)
 - Gap analysis
- 2013: Validate Performance Requirements
- 2014: Adopt ConOps + SWx SARP for ICAO/WMO Divisional Meeting
- 2016: Implement SWx SARP

Summary

- Draft ConOps on ICAO Web page for comment
- Comments due by June 30, 2012
- FAA as rapporteur will review all comments received and report back to IAVWOPSG with recommendation on ConOps
- Adoption of ConOps targeted for ICAO/WMO Divisional Meeting in 2014
- SARPS for Annex 3 with Amd 77 in 2016

Questions

NOA	A Space	Flux level of ≥ 10 MeV particles	Number of events when flux level was			
		(ions)*	met**			
S 5	Extreme	Biological: unavoidable high radiation hazard to astronauts on EVA (extra-vehicular activity); passengers and crew in high-flying aircraft at high latitudes may be exposed to radiation risk. *** Satellite operations: satellites may be rendered useless, memory impacts can cause loss of control, may cause serious noise in image data, star-trackers may be unable to locate sources; permanent damage to solar panels possible. Other systems: complete blackout of HF (high frequency) communications possible through the polar regions, and position errors make navigation operations extremely difficult.	10 ⁵	Fewer than 1 per cycle		
S 4	Severe	Biological: unavoidable radiation hazard to astronauts on EVA; passengers and crew in high-flying aircraft at high latitudes may be exposed to radiation risk.*** Satellite operations: may experience memory device problems and noise on imaging systems; star-tracker problems may cause orientation problems, and solar panel efficiency can be degraded. Other systems: blackout of HF radio communications through the polar regions and increased navigation errors over several days are likely.	104	3 per cycle		
S 3	Strong	Biological: radiation hazard avoidance recommended for astronauts on EVA; passengers and crew in high-flying aircraft at high latitudes may be exposed to radiation risk.*** Satellite operations: single-event upsets, noise in imaging systems, and slight reduction of efficiency in solar panel are likely. Other systems: degraded HF radio propagation through the polar regions and navigation position errors likely.	10 ³	10 per cycle		
S 2	Moderate	Biological: passengers and crew in high-flying aircraft at high latitudes may be exposed to elevated radiation risk.*** Satellite operations: infrequent single-event upsets possible. Other systems: effects on HF propagation through the polar regions, and navigation at polar cap locations possibly affected.	10^{2}	25 per cycle		
S 1	Minor	Biological: none. Satellite operations: none. Other systems: minor impacts on HF radio in the polar regions.	10	50 per cycle		
24 April 2012 Federal Aviation 16 Administration						